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A novel procedure for the treatment of sedimentation velocity data by the method of moments is proposed 
for determination of polydispersity indices, such as M , J M , ,  etc. This method is based on linear 
approximations and enables the reliable exclusion of diffusion and concentration effects. It is particularly 
effective when applied to polymer solutions with strong intermolecular interactions and noticeable diffusion 
mobility of the macromolecules. 
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I N T R O D U C T I O N  

Velocity ultracentrifugation is a valuable analytical tool 
for the measurement of molecular weight heterogeneity 
of a polymer sample by an absolute method I. The 
effectiveness of the method depends strongly on the 
sensitivity of the limiting sedimentation constant, So, to 
change in molecular weight, M, and also to a considerable 
extent on the reliable exclusion of diffusion and concen- 
tration effects, which disturb the sedimentation boundary 
profile. A possible way to solve the latter problem is 
presented in this work; it involves the method of moments 
and is based on linear approximations. 

In a classic sedimentation velocity experiment, the 
macroscopic flow of the polymer molecules in the 
centrifugal field is known to lead to formation of a 
boundary between the solution and solvent, termed the 
sedimentation boundary. This boundary migrates in a 
radial direction at a rate equal to that for the isolated 
macromolecules, and spreads with time. Ahead of the 
boundary, there is a plateau region with approximately 
constant solute concentration equal to the initial one, 
Co. Boundary curves that are not restricted by the 
meniscus and leave the plateau regions ahead of 
their maxima, according to Fujita 2, are referred to 
as freely sedimenting boundary curves. The short 
phenomenological description of boundary spreading 
presented here is valid for such curves. 

EXPERIMENTAL 

The  method o f  moments  

The boundary curve (profile) means the distribution 
of displacements (x-spectrum) of the macromolecules in 
the sedimenting boundary range i.e. (i/co) (t~c/c~x), where 
x is the distance measured from the axis of rotation. The 
ith moment, mi, of a freely sedimenting boundary curve 

about the centre of rotation is defined by: 

:o o m i = xi(Oc/Ox) d x  (1) 

The integration range here (0, ~ )  is limited in practice 
by the cell dimensions, namely from the meniscus level, 
x . . . .  to plateau regions, xp. The dispersion of the 
x-spectrum (the second moment about the mean of the 
boundary gradient curve) is defined by: 

0 -2 = (X - -  ~)2  = m z / m  0 _ (mx/mo)2  (2) 

Boundary spreading with time is caused by both the 
polymer heterogeneity and the Brownian spreading of 

2 and 2 the concentration boundary. Let us define axs trxo as 
the contributions of these phenomena to x-spectrum 
dispersion, and accept a postulate about the reciprocal 
independence of the sedimentation and diffusion flows of 
the macromolecules valid at vanishing concentration: 

2 2 _  2 2 (3) O" x - -  (70 - -  O'xD + O'xs 

2 and a 2 denote the dispersions of the In this equation, ax 
curve that defines the sedimentation boundary at times 
t = t  and t=0 ,  trxD2 _-2Dr ( l+so92t+. . . ) ,  where D and 
s are the weight-average values of diffusion and 
sedimentation constants, respectively, t is the time of 
centrifugation at the angular rotor rotation velocity 
09 = 2rm/60, and n is expressed in rev min-  1. The tr 2 value 
is especially significant when a sedimentation velocity 
experiment is carried out with a synthetic boundary cell 3. 

The heterogeneity of a polymer sample can be 
quantified by the standard deviation, a,, of the 
distribution ofs (s-spectrum) which is related to _2 L .  4-,5. Oxs I)y  . 

2 = X2m[fsCO2t + (asO92t)3/3! + (O.s~O2t)5/5! + . . . - ] 2  (4)  O'xs 

with X m = m  1. Thus, to a good approximation f f sCOt2< 
s¢~o2t << 1, and the observed if2 versus t relation is described 
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quite accurately by: 

2 _ a2 = 2Dr + 2 _2.4,2 ax XmOsW , (5) 
Equation (5) was derived in the manner below by using 
the definition of s given by: 

x = Xo exp(coZst) (6) 

where Xo is equal to x at the initial time t = 0 and coincides 
with Xme, in experiments with a conventional cell. The 
difference in displacements, Ax, of two molecules at time 
t = t, after the expansion of the exponents in a power 
series, was recalculated to the difference in sedimentation 
constants; as a result, equation (5) was obtained on the 
assumption that StO2t<< 1. 

When sedimentation velocity does not depend on the 
solute concentration, in accordance with equation (5), the 
o 2 is the quadratic function of time, and a 2 is obtained by: 

2 2 2 2 4- 2 as = (ax -- ao -- 2Dt)/Xm co t (7) 

2 may be calculated by At fixed time t=t ,  the ax 
equation (2), and D measured separately in a diffusion 
experiment or with the aid of the same analytical 
ultracentrifuge under low rotation velocity (low n). 

2 is, however, more complicated Calculation of as 
when sedimentation velocity depends on the solute 
concentration. The value of s generally decreases with 
increasing c. For  this reason, the macromolecules situated 
at the lower c sediment faster than the same ones at a 
higher c. As a result, the sedimentation boundary 
becomes sharper (the so-called self-sharpening effect for 
a homogeneous solute 2 and the Johnston-Ogston effect 6 
for a polymolecular solute). These effects can be taken 
into account by inserting the functions f and q~ in 
equation (3): 

2 2 2 2 
ax -- ao = axDIf + axs/CP (8) 

The influence of both effects weakens with decreasing c 
and may be completely excluded by the extrapolation 
for infinite dilution, c=0 ,  with the selected suitable 
approximation function, preferably the linear one. An 
analysis of the available experimental sedimentation data 
has shown that f and ~ in equation (8) may be well 
approximated by7: 

f =  (1 + K l~o2AsXSt°s) 2 (9) 

tp =(1 + K2co2As2t°'3) 2 (10) 

where K~ and K 2 are arbitrary constants independent of 
c and t, As = s o -  s, where s is the sedimentation constant 
measured at concentration c and So is the value 
extrapolated to c = 0. Hence, the dependence of a x on As 
was shown 7 to be an approximately linear function 
convenient for the ax extrapolation to As~0  (i.e. c=0)  
with the subsequent exclusion of diffusion effects carried 
out by means of equation (7). However, in a region of 
very low c this approximation is not always linear, and 
therefore becomes insecure. Among the more linear 
dependences is that of Gralrn, described briefly below. 

Gral~n-Eriksson method 
Gralrn s defined the width of the sedimentation 

boundary, B, as the ratio of the area under the curve to 
its maximum height: 

B = (Oc/Ox) dx/(Oc/~X)max (11) 
o 

As the quantity of a solute heterogeneity Gralrn used the 
slope of B as a function of x m, and when it depended on 
x m and c he proposed that the slope at the origin be 
extrapolated to vanishing concentration: 

OB/Ox = lim lim (aB/Oxm) (12) 
c - + O  Xm --~ XO 

Such exclusion of concentration effects was supplemented 
by Eriksson 9 who took into account diffusion spreading 
of the sedimentation boundary by subtracting the 
diffusion dispersion: 

dB/dx=l im  lim d[(B2-4~zDt)l/2]/dxm (13) 
C "'~ 0 Xm ---~" XO 

This dB/dx value was taken as a quantity related to solute 
heterogeneity in the sedimentation behaviour and, hence, 
as a parameter of its molecular-weight distribution, 
MWD 1°. 

One can see from equation (13) that the applicability 
of this method is limited by the requirement: 

B 2 ~ 4nDt (14) 

In a polymer solution with strong s(c) dependence, this 
condition is often not satisfied 7, particularly for the 
semiflexible macromolecules with intensive intermolecular 
hydrodynamic interactions 11. However, it is more 
important to note that relation (3) is valid, in general, 
only when s#s(c) or at c=0 .  This means that the 
subtrahend in equation (13) is not 4nDt but 4~zDt/f(see 
equation (8)), i.e. an unknown a priori value, accounting 
for the self-sharpening of the sedimentation boundary. 
Hence, this procedure for the exclusion of diffusion 
effects, suggested by Eriksson 9, disregards the shelf- 
sharpening of the sedimentation boundary and is not 
therefore applicable to the polymer-solvent systems with 
concentration-dependent sedimentation velocity, even if 
the required condition (equation (14)) holds. (One can 
see that a formal application of Eriksson's procedure to 
a polymer solution with s=s(c) leads to erroneous, 
lowered values of the heterogeneity indices.) Probably for 
this reason the method has not found wide application. 

Nevertheless, it is an experimentally established fact 
that B very often depends on Xm as a linear function, in 
a wide range of c. It would be tempting, therefore, to use 
this regularity in the convenient method for determining 
solute heterogeneity. In the present approach, we exclude 
the diffusion spreading not before, but after the exclusion 
of concentration effects, and by adding the more complete 
description of the sedimentation boundary width as a 
function of Xm at vanishing concentration. 

RESULTS AND DISCUSSION 

New approach to determination of heterogeneity 
The method mentioned above was developed for the 

unimodal sedimentation curves with a Gaussian form. 
To avoid this assumption, we use (instead of boundary 
width) the standard deviation a x of the x-spectrum and 
study its change with varying time. The slope of the a x 
dependence on x m at vanishing concentration is defined 
by: 

(&r,J8Xm)o = lim (0ax/0Xm) (15) 
¢ - + 0  

Let tr, o represent the a, value at c=0 .  Since a,o-+0 at 
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Xm"-~X0, w e  c a n  write: 

O'xo = (~O'x/~Xm)O(Xm - -  XO) (16) 

Inserting this a.o into equation (3), which is valid at c = 0, 
we have: 

2 _ _  [(Offx/(~Xm)2(Xm - -  XO)2 - -  2Dt]/x2co4t2 (17) O" s - -  

Replace t by x m here. On the assumption that Sal2t<< 1, 
from equation (6) we have: 

t = (1/(D2S)(Xm - -  Xo)/X 0 (1 8) 

Substitution of this t relation in equation (17) yields: 

2 = r(~O.x/t~Xm)02(Xm_ XO)2 __ (1/oj2So)2D ln(x~/xo)]/ O" s 

2 - 2  [XmS o ln2(Xm/Xo)] (19) 

Here D is clearly the infinite value of the weight-average 
diffusion coefficient as far as equation (19) is deduced for 
c ~ 0  conditions. 

Note that equation (3), and hence equation (19), should 
be valid at any time, i.e. at any xm satisfying the 
requirement ln(x~/xo)<< 1 adopted above. Substitution of 
Xo=6.0cm and Xm=6.3cm in equation (19) leads, for 
instance, to: 

a~ ls~ = 0.95(da,JOxm)~ - Dl(o92so) 

= 0.9S(dtrx/t~Xm)2 _ [RT/to2(1 _ Z3po)] M -  x (20) 

where R is the gas constant and ( 1 -  fP0) the buoyancy 
factor. The numeric coefficient in equation (20) at 
(&r,JOx~)o must be constant but exhibits slight dependence 
on the Xm value, as a consequence of the approaches 
made above. The subtrahend in equation (20), in turn, is 
the contribution of the diffusion spreading of the 
sedimentation boundary with varying time. One can see 
that an absolute value of this contribution is inversely 
proportional to M, and that a relative part of it is 
inversely proportional to M and to the heterogeneity 
index. In other words, the part of diffusion spreading 
becomes more significant for both the low molecular 
weight and the moderately heterogeneous polymer 
samples. 

Thus, the method presented above for the treatment 
of sedimentation velocity data consists of the following 
steps. 

1. A series of experiments with a freely sedimenting 
boundary is performed at several different dilutions 
(with decreasing values of c down to the minimum 
possible value) and under identical experimental 
conditions (co, temperature, cell). 

2. Molecular weight, M, and diffusion constant, D, are 
determined independently. 

3. Standard deivation ax is calculated at different time 
moments using the sedimenting boundary profile, and 
the a~ value is plotted versus x m. 

4. Slopes of these dependences at different c values are 
extrapolated to vanishing concentration in coordinate 
axes  Offx/OX m versus c (or As). In this way, the (dO'x/~Xm) 0 
value is obtained. 

5. Finally, the diffusion spreading is excluded by means 
of equations (19) and (20) whence aflSo follows. 

Reduced dispersion of the s-spectrum, a2s/S~, is known 
to be an absolute quantity of the polymer sample 
heterogeneity. Further transition to MWD indices, i.e. to 
indices of polymolecularity, may be carried out by means 
of known expressions that relate to each other the second 
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moments of the s-spectrum and the M-spectrum, for 
instance by12: 

2 2 - 2  2 2 a ~ / M , - ( M , J M w ) - l = ( 1 - b )  as~So (21) 

where b is the exponent in the equation s o - -KM x -b, Mz 
and M ,  are the z- and weight-average values of M. 

CONCLUSIONS 

The proposed treatment of the sedimentation data 
may be regarded as the transformed Gral6n-Eriksson 
procedure. However, in contrast, the proposed method: 

1. takes into account more rigorously all concentration 
effects and does not require special knowledge of D(c) 
dependence; 

2. is insensitive to the type of cell used (either a 
conventional or a synthetic boundary cell) because not 
trx, but its change with varying Xm is used in the 
calculations; 

3. is based on linear approximations that provide a 
higher reliability of the results; 

4. requires no assumption as to the form of the 
distribution. 

Conclusion 2 is especially important, as with the aid of 
the synthetic boundary cell it is more often possible to 
satisfy the conditions of freely sedimenting boundary 
formation and hence to increase the applicability of the 
method, eliminating the problem connected with negative 
s values. The method of moments seems to be useful in 
the preliminary treatment of sedimentation data, which 
helps to choose the proper method to obtain MWD 
according to the Gral6n-Lagermalm or any other method 2. 

The peculiarities of the proposed (partly empirical) 
method are believed to be of great significance when it 
is applied to moderately heterogeneous polymer samples 
with considerable diffusion and concentration effects. 
Such a contingency has been met, for instance, in the 
analysis of sedimentation velocity diagrams obtained for 
poly(benzimidazole terephthalamide) and carboxymethyl 
cellulose. An account of these studies will be submitted 
at a later date. 

Finally, it should be noted that, when the sedimentation 
velocity of the macromolecules does not depend on c (or 
at c~0), the sedimentation boundary broadens with 
time in accurate proportion to the path passed by the 
macromolecules (ax~Xm, which follows from equation 
(20) and was mentioned by Eriksson9). However, 
the similar linear character of the ax dependence 
on Xm for the polymer-solvent systems with strong 
s=s(c) dependence at definite solute concentrations 
(an experimental result which does not follow from 
equation (8)) still awaits theoretical explanation. 
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